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Figure 1. OAKINK2: (A) shows the captured image streams and the pose annotations, as well as the decomposition of Combined Tasks
into interdependent Primitive Tasks; (B) shows several examples of hand-object interactions in Primitive Tasks. (Zoom in for details)

Abstract

We present OAKINK2, a dataset capturing human in-
teraction with multiple objects for further understanding of
embodied hand-object manipulation in long-horizon com-
plex task completion. OAKINK2 features the demonstra-
tions for Primitive Tasks as minimal interactions fulfill-
ing object affordance attributes, and the demonstrations for
Combined Tasks as a combination of Primitive Tasks with
certain dependencies. With the provided multi-view image
streams and fine-grained pose annotations for the human
body, hands and various interacting objects, OAKINK2
supports applications such as hand-object reconstruction;
motion synthesis; scene interpretation, complex task target
parsing, and human demo replication and combination in
the scope of complex manipulation task completion. Our
datasets and models will be released to the public.

1. Introduction
Learning how humans achieve specific task objectives
through diverse object manipulation behaviors has been a
long-standing challenge. Recent data-driven approaches

have made significant progress on this topic, including
hand-object pose estimation [1, 4, 10, 18, 20–22, 31, 34],
interaction synthesis [8, 14, 26, 50, 55], and action imitation
[46, 47]. However, the gap still exists for current methods
to achieve a human-level understanding on object manipu-
lation for complex task completion. In particular, humans
possess a remarkable capacity to learn from personal expe-
riences, allowing them to interact with specific objects in an
appropriate sequence to achieve desired outcomes. This in-
spires us to focus on embodied hands-object interaction that
completes long-horizon complex manipulation tasks.

Tracing prior research, the advancement of data-driven
methods is inseparable from the emergence of a series
of solid hand-object interaction datasets: ObMan [20],
YCBAfford [8], HO3D [17], ContactPose [3], GRAB [49],
DexYCB [6], H2O [28], DexMV [47], HOI4D [35], ARC-
TIC [11], ContactArt [61], AssemblyHands [42], Afford-
Pose [24] and OakInk [57]. A noteworthy example among
both types of datasets is OakInk [57]. OakInk analyzed ob-
jects’ affordance attributes and collected interaction demon-
strations based on intents involving these attributes. De-
spite the success, these datasets do not sufficiently reflect



the orders and dependencies between object affordance ful-
fillment and the interactions between objects to fulfill their
affordances. This leads us to break down a complex ma-
nipulation task into multiple minimal affordance-fulfilling
tasks known as Primitive Tasks. Each task is associated with
the affordance attributes of the objects and intrinsically con-
tains interaction relationships between multiple objects.

Another form of the data source is human-centric video
datasets, represented by EPIC-KITCHENS-100 [9], Ego4D
[15], and HAKE [32]. These large-scale datasets are col-
lections of common manipulation tasks and are accompa-
nied by detailed action segment annotations. However,
void of 3D grounding for interacting hands and objects im-
pedes the application of these datasets in 3D understand-
ing. Despite this limitation, these video datasets show incor-
porating task-related annotations to hand-object interaction
datasets can assist in understanding and completing com-
plex manipulation tasks in 3D space.

To these ends, we present OAKINK2, extending the
methodology of OakInk [57] to a further front: capturing
long-horizon hand-object interactions in multiple scenar-
ios and analyzing the object affordance dependency and
interaction relationships. OAKINK2 is a large-scale hand-
object interaction dataset containing human demonstrations
for complex manipulation task completion, with multi-view
image streams and paired pose annotations in 3D space for
interacting hands and objects. OAKINK2 features the an-
notations of objects’ affordance attributes, the demonstra-
tions of Primitive Tasks to fulfill these affordances, and the
demonstrations of Combined Tasks that are composed of
Primitive Tasks with certain dependencies.

To construct OAKINK2, we first select object clus-
ters from object repositories based on these objects’ co-
existence and construct corresponding interaction scenar-
ios for these clusters. In each scenario, annotators pro-
pose complex manipulation task targets and pick involved
object categories. Once the scenarios and task targets are
ready, the selected objects are inspected for their affor-
dance attributes using the annotation paradigm described
in OakInk. We then design Primitive Tasks as minimal in-
teractions to fulfill object affordance attributes, establishing
mapping relationships between these tasks and affordance
attributes. Lastly we acquire Combined Tasks to link long-
horizon complex manipulation tasks within each scenario to
embodied hands-object interactions. As the name implies,
they are Primitive Tasks combinations that describe the de-
pendencies of the constituent Primitive Tasks and constrain
the execution orders. With all these formulations in place,
we construct OAKINK2, a dataset that reflects the relation-
ship between object affordances in embodied hand-object
interactions that complete complex manipulation tasks.

OAKINK2 is composed of four interaction scenarios and
75 objects in total. We invite 9 subjects to interact within

the constructed hand-object interaction scenarios and record
627 sequences of real-world bimanual hand-object interac-
tion sequences, where 264 of these sequences are for Com-
bined Tasks. These sequences contain 4.01M frames from
four different views, including three allocentric views and
one egocentric view. The dataset is captured on a data cap-
ture platform composed of a MoCap system and a multi-
camera system. The pose of the subjects’ body, hands, and
the objects involved are solved from the captured optical
markers. In each captured sequence, the poses and articu-
lation parameters of all objects directly involved in the in-
teraction process are captured and solved, thus the implicit
interaction relationships between these objects are also con-
tained in the annotations. In each sequence for Combined
Tasks, the dependencies between Primitive Tasks are ex-
pressed with directed acyclic graphs and are included in
the annotations with widely used PDDL [38] specifications.
OAKINK2 intends to facilitate a variety of tasks: (1) con-
ventional vision tasks like hand-object reconstruction, ac-
tion recognition, and motion synthesis; and (2) task and
motion planning aimed at the completion of intricate ma-
nipulation assignments.

To summarize, we present OAKINK2, a large-scale
dataset of embodied hand interactions with multiple objects
for human completion of long-horizon complex manipu-
lation tasks. OAKINK2 features Primitive Tasks demon-
strations as minimal interactions fulfilling object affordance
attributes and Combined Tasks demonstrations along with
their decomposition into interdependent Primitive Tasks.

2. Related Works
Hand-Object Interaction Datasets. The recent research
community has witnessed the emergence of numerous
datasets on hand-object interactions. Earlier datasets [3,
8, 20] focused on static hand-object interactions with lim-
ited diversity. More recent datasets [6, 11, 17, 28, 49, 57]
captured dynamic hand-object interactions covering the ap-
proaching, placement, and affordance fulfillment processes.
These include datasets focused on embodied interactions
[11, 49], bimanual interactions [11, 28] and interactions
with articulated bodies [11, 61]. We pay particular atten-
tion to interaction datasets related to object affordances. [8]
expressed affordances in grasp type labels. [3, 11, 49] col-
lected intention labels for interactions. [24, 57] studied ob-
ject affordance-based hand-object interaction and collected
object segmentations and affordance labels. While [24]
only annotated static interactions and [57] collected data
in intention-oriented manner, our proposed OAKINK2 cap-
tures both human demonstrations for minimal interactions
fulfilling object affordance attributes as Primitive Tasks,
and demonstrations for Combined Tasks where object af-
fordance attributes fulfilled in specific order constrained by
their dependencies.



Another data source of hand-object interactions is large-
scale 2D video datasets accompanied by action annotations.
This includes EPIC-KITCHEN-100 [9] and EGO4D [15] as
large-scale egocentric video datasets, HAKE [32] for ob-
ject concept learning and HA-ViD [60] with temporal an-
notations for primitive tasks and atomic actions. Though
these datasets provided spatial annotations like labeled 2D
boxes, a lack of 3D annotations hinders the direct under-
standing of the 3D scene in interaction with current learning
methods. Recent work like EPIC-Fields [52] explored pro-
viding 3D reconstructions algorithmically on existing video
datasets. Our proposed OAKINK2 provides video demon-
strations along with the corresponding 3D grounding infor-
mation: embodied hands and objects pose and shape anno-
tations. With this 3D information OAKINK2 can seamlessly
support current learning methods for hand-object interac-
tions while possessing task-level annotations.

Datasets and Benchmarks for long-horizon complex ma-
nipulation task completion. Multiple types of datasets
and benchmarks for solving long-horizon complex manip-
ulation tasks have been constructed in recent years. Long-
horizon tasks in [12, 29, 45] were more inclined to mobile
embodied manipulation, i.e. navigation first then manipula-
tion. [16, 39, 41, 53] focused on completing manipulation
tasks under complex objective constraints, often embedded
in text descriptions. Despite the complex constraints and
trajectories, these long-horizon manipulation tasks usually
only covered one affordance of an object instance.

OAKINK2 considers ‘long-horizon’ as the fulfillment of
more than one object affordance attribute in a given manip-
ulation task. As a result, OAKINK2 places more emphasis
on the fulfillment order of these object affordances and their
interdependencies.

3. Construction of OAKINK2
OAKINK2 features embodied hands-object interaction for
long-horizon complex task completion. We first introduce
how the interactions are acquired in Sec. 3.1. We then pro-
vide information about the data capture setup in Sec. 3.2
and procedures to annotate the dataset in Sec. 3.3. We in-
troduce how execution paths of certain complex Combined
Tasks are narrated in language in Sec. 3.4.

3.1. Interaction Acquisition

This subsection introduces the three-stage interaction acqui-
sition process (as illustrated in Fig. 2).

3.1.1 Scenario Construction

From the objects we have collected (Fig. 2 -1.A), we select
four clusters of objects that frequently co-exist in the in-
teraction process and can be accurately tracked in the data
capture platform. The selected objects come from four pos-

sible sources: (1) ShapeNet [5] models; (2) ContactDB [2]
objects; (3) objects included in OakInk [57]; (4) original ob-
jects collected from vendors. Based on these selected object
clusters (Fig. 2 -1.B), we construct four interaction scenar-
ios. Each scenario has its unique characteristic and corre-
sponds to a set of complex manipulation tasks with targets.
The scenarios are: (1) kitchen table, (2) study room table,
(3) demo chem lab, (4) bathroom table. These scenarios
come up with their own task targets for hand-object inter-
action. We invite annotators ( ) to propose complex ma-
nipulation task targets based on the selected cluster of the
objects in the scenario (Fig. 2 -1.C).

3.1.2 Primitive Tasks Acquisition

In the second stage, we ask annotators to evaluate the ob-
jects within the scenario and assign affordance attributes to
them. Each affordance attribute contains a specific part seg-
mentation and a phrase tuple (Fig. 2 -2.A). Primitive Tasks
is designed as minimal interactions that fulfill those object
affordance attribute. Here minimal indicates the designed
tasks are required to fully complete the functionality of the
object affordance attribute without any redundant interac-
tion process. The affordance attributes of objects in the
scenarios previously constructed are attached following the
protocol in OakInk [57]. We invite annotators to attach the
affordance attributes to the object, where each attribute con-
tains a segmentation of a specific part along with one phrase
tuple describing its function. We then concretize Primi-
tive Tasks based on these affordance attributes, specifying
the starting condition, ending condition, and the in-between
hand-object interaction process. For example, a knife has
been attached to the affordance attribute ⟨cut, something⟩,
and the part segmentation for its blade. Then a Primitive
Task, cut something, is designed to implement this affor-
dance attribute (Fig. 2 -2.B). The task requires the subject
to move the blade of the knife to completely pass through
the object to be cut so that the separated parts could be de-
tached. The task will be considered incomplete if the blade
only touches the surface or stops halfway inside the object.

3.1.3 Combined Tasks Decomposition

In the third stage, we proceed to design and decompose
Combined Tasks that implement complex manipulation
task targets through long-horizon hand-object interaction
processes. Each manipulation target is paired with specific
object instances, combining the starting conditions and in-
stantiated task objectives to form concrete Combined Tasks
(Fig. 2 -3.A). We collect all available affordance attributes
of the involved objects and their associated Primitive Tasks,
leading to a set of available Primitive Tasks. We notice
that the ordering of Primitive Tasks completion is important
for the Combined Task completion, indicating the existence
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Figure 2. Three-stage interaction acquisition process. In 1⃝ Scenario Construction, annotators ( ) are tasked with creating clusters
of objects (1.A), envisioning interaction scenarios (1.B), and suggesting complex manipulations targets (1.C). In 2⃝ Primitive Tasks Ac-
quisition, annotators analysis and attach affordances to the objects (2.A), and propose an Primitive Task to encapsulates an affordance
(2.B). In 3⃝ Combined Tasks Decomposition, experts ( ) frame the task with a specific outline (3.A), inviting subjects ( ) to map out its
execution using the established Primitive Tasks (3.B), and breakdown their responses into the dependency graph (3.C).

of dependencies between these Primitive Task components
within the Combined Task. We deploy a special capture
protocol to acquire the decomposition and dependency in-
formation. Before the capture, the expert ( ) instantiates
the target with specific description, and then ask the subject
( ) to describe the ordering of the completion of available
Primitive Tasks to complete the Combined Tasks (Fig. 2 -
3.B). The ordering is recorded and inspected by the expert to
derive the dependencies between the Primitive Tasks com-
ponents. Single dependency relationship is represented as a
directional link between two tasks, and all dependency re-
lationships effective in the Combined Task are organized in
a directional acyclic graph (Fig. 2 -3.C). An example of a
Combined Tasks is to prepare a cup of sweet water. Wa-
ter in bottle needs to be transferred to the target container
teacup. Then the subject has to unscrew the lid of the bottle
first, then to pour the content.

3.2. Capture Setup

The data capture platform contains two major components:
the optical MoCap system for collecting pose information
and the multi-camera system for capturing visual informa-
tion within the capture volume. The MoCap system uses 12
Optitrack Prime 13W infrared cameras to track the position
of the surface markers on the subject’s upper body, left and
right hand, and the objects on the table. The MoCap system
runs at 120 hz. The multi-camera system consists of 4 com-
modity RGB cameras, 3 of which are from allocentric views
and 1 is from the egocentric view. The multi-camera system
runs at 30 fps. We synchronize all sensors and calibrate the
relative transforms between these two systems.

HandSet

HeadSet

BodySet

Figure 3. Capture setup. The left part shows the captured vol-
ume. MoCap cameras are circled in blue and RGB cameras in red.
The right part shows in order the head marker-set for the head pose
and the egocentric camera, the upper body and hand marker-set.

3.3. Annotation Pipeline

We begin with the cleaned reflective marker positions in
the capture volume. The procedure to clean the captured
marker positions is described in Sup. Mat. The marker po-
sitions are mostly provided by the MoCap system and com-
plemented with the triangulation results of 2D key points of
multi-view images when the MoCap system fails to track
the markers. Based on these marker positions we obtain the
poses of objects and humans.

Object Pose. Poses of rigid bodies are directly solved as
long as three or more markers are tracked. The base parts of
articulated bodies are handled similarly to rigid bodies. The
articulated parts are divided into two categories. If the part
is large enough to attach enough markers without blocking
the interaction then it will be handled like rigid bodies. Oth-
erwise, a marker is attached to that part. The marker’s posi-



tion is calibrated in the object’s canonical coordinate frame,
as well as the articulation description (e.g. revolution axis
or prismatic axis). The parameter of the articulation joint is
determined by minimizing the squared difference between
the observed marker position and the recovered marker po-
sition in the objects’ canonical frame.

Human Pose and Surface. The annotation of human pose
and surface relies on SMPL-X [44]. Using full-body models
provides extra information like arm poses and head poses,
and is also helpful to attain realistic hand-wrist articulation
as reported in [11]. MANO [48] parameters are fit to the
hand part of SMPL-X.

To actually acquire human pose and surface, we employ
a two-stage fitting approach inspired by the application of
the MoSH++ algorithm in [11, 36, 49]. In the first stage,
we use the captured markers when the subject in T-pose
to fit the subject’s SMPL-X shape parameter β̄ and each
marker’s location P

(c)
M in the canonical space of SMPL-X.

From stage one’s optimization result, we can determine the
correspondence C(·) from the subject’s surface markers to
the vertices of the SMPL-X model.

In the second stage, we fit the subject’s pose θ = {θt}
throughout the interaction process based on the shape β̄
and marker correspondence C(·) obtained in the first stage.
Then the subject’s surface is reconstructed with the SMPL-
X body model provided the pose and shape parameters.
Other body representations like MANO are derived from
this result. We implement the two-stage fitting pipeline on
PyTorch for its automatic differentiation support and use the
common gradient descent based algorithm to solve for both
stages. Details are provided in Sup. Mat.

3.4. Narrations of Task Execution Path

We narrate the current state of the scene together with the
subsequent Primitive Tasks to be performed on a selected
set of complex Combined Tasks along the execution path
of their constituent Primitive Tasks. We ask annotators to
summarize the remaining tasks that have yet to be com-
pleted to achieve the current manipulation target, given the
scene after the execution of the previous Primitive Tasks and
the upcoming Primitive Tasks to be executed next. Subse-
quently, annotators will provide descriptions of the details
required for the next step in executing the Primitive Tasks.
The text obtained from annotators will be refined by GPT-
4 [43] and used as the narration for the execution path of
complex tasks. The process is illustrated in Fig. 4.

4. The OAKINK2 Dataset
4.1. Data and Annotation

OAKINK2 provides multi-view RGB frames along with the
calibrated camera parameters to support vision-based per-
ception methods. We collect four 30 fps image streams

State: The pear required for
the task is not cut.

State: The pear has been cut. 
The container lacks sugar 
and water. 

State: The lid of the green 
bottle has been removed. 

State: The sugar has been 
placed. Container lacks water. 

… …

Prim: cut the pear with knife 
and place in the container.

Prim: scoop sugar from the 
container and place in the 
target container.

Prim: uncap the lid of the 
bottle containing sugar.

Prim: unscrew the lid of the 
bottle containing water.

… …

Task: prepare a sweet pear soup in the yellow teacup.
Skills: cut, uncap, scoop, pour, unscrew, place ... 

Figure 4. Narration of Task Execution Path. The left column
shows the current state of the scene. The center column shows
the narration dialog retrieved from annotators. The right column
shows the upcoming Primitive Task to be executed.

with resolution 848×480, including three allocentric views
and one egocentric view. The annotation of OAKINK2
covers the conventional 3D annotation reflecting the inter-
action process, and the task-related information reflecting
task dependencies. The dataset contains annotations for the
body, hands, and objects (with articulation parameters if
applicable). For the task-related part, the annotations of-
fered include: the affordance attributes, expressed as part
segmentation with attached phrase tuple; Primitive Tasks
corresponded to the affordance attributes;Combined Tasks
with the description of task targets, initial conditions, the
dependency graph of constituent Primitive Tasks and the
subject’s completion sequence; PDDL specifications [38]
based on the Combined Tasks descriptions. Fig. 5 illus-
trates a selection of scanned objects models in OAKINK2,
emphasizing the separable or articulation parts of the ob-
jects. Fig. 6 shows several scene initiations paired with
complex manipulation targets within three types of scenar-
ios. Fig. 7 presents a visualization of the annotation quality
in OAKINK2. The body, hands, and objects are blended on
the original images for visual inspection. Evaluations of the
dataset annotation are detailed in Sup. Mat. Image-based
subsets undergo cross-dataset validation, while the shape-
based subsets are examined for their physical property in-
tegrity.

4.2. Dataset Statistics

OAKINK2 sets up four scenarios of hand-object interaction
with a total number of 38 long-horizon complex manipu-



Dataset image
mod. resolution #frame #views #subj #obj 3D

gnd.
real /
syn.

label
method

hand
pose

obj
pose

afford.
inter.

dynamic
inter.

long-
horizon

task
decomp.

EPIC-KITCHEN-100 [9] ✓ – – 1 37 – ✗ – – ✗ ✗ ✗ ✗ ✓ ✓
EGO4D [15] ✓ – – 1 931 – ✗ – – ✗ ✗ ✗ ✗ ✓ ✓
HA-ViD [60] ✓ 1280× 720 1.5M 3 30 40 ✗ – – ✗ ✗ ✗ ✗ ✓ ✓

FPHAB [13] ✓ 1920× 1080 105K 1 6 4 ✓ real mocap ✓ ✓ ✓ ✓ ✗ ✗
ObMan [20] ✓ 256× 256 154K 1 20 3K ✓ syn simulate ✓ ✓ ✗ ✗ ✗ ✗
YCBAfford [8] ✓ – 133K 1 1 21 ✓ syn manual ✓ ✗ ✗ ✗ ✗ ✗
HO3D [17] ✓ 640× 480 78K 1-5 10 10 ✓ real auto ✓ ✓ ✗ ✓ ✗ ✗
ContactPose [3] ✓ 960× 540 2.99M 3 50 25 ✓ real auto ✓ ✓ ✓ ✗ ✗ ✗
GRAB [49] ✗ – 1.62M – 10 51 ✓ real mocap ✓ ✓ ✓ ✓ ✗ ✗
DexYCB [6] ✓ 640× 480 582K 8 10 20 ✓ real crowd ✓ ✓ ✗ ✓ ✗ ✗
H2O [28] ✓ 1280× 720 571K 5 4 8 ✓ real auto ✓ ✓ ✓ ✓ ✗ ✗
HOI4D [35] ✓ 1280× 800 3M 1 9 1000 ✓ real crowd ✓ ✓ ✓ ✓ ✓ ✗
ARCTIC [11] ✓ 2800× 2000 2.1M 9 10 11 ✓ real mocap ✓ ✓ ✓ ✓ ✗ ✗
ContactArt [61] ✓ – 332K – – 80 ✓ real transfer ✓ ✓ ✗ ✓ ✗ ✗
AssemblyHands [42] ✓ 1920× 1080 3.03M 12 34 – ✓ real semi-auto ✓ ✗ ✓ ✓ ✓ ✓
AffordPose [24] ✗ – – – – 641 ✓ syn manual ✓ ✓ ✓ ✗ ✗ ✗
OakInk-Image [57] ✓ 848× 480 230K 4 12 100 ✓ real crowd ✓ ✓ ✓ ✓ ✗ ✗
OakInk-Shape [57] ✗ – – – – 1700 ✓ real transfer ✓ ✓ ✓ ✗ ✗ ✗

OAKINK2 ✓ 848× 480 4.01M 4 9 75 ✓ real mocap ✓ ✓ ✓ ✓ ✓ ✓

Table 1. A cross-comparison among various public datasets.

...

Figure 5. Scanned object models.

Demo chemistry lab

Study room table

Kitchen table

Light an alcohol lamp with a lighter

Plug in the power and use the laptop

Weigh out 10 grams of sugar cubes with a scale

Sign your name on the whiteboard

Heat the liquid in the container with an alcohol lamp

Prepare a apple salad

Figure 6. Scene initiation. Figure 7. Quality visualization.

OAKINK2-H-SV Comprising single-view images for hand recon-
struction selected when hands are visible.

OAKINK2-H-MV For multi-view hand reconstruction, assembling
views where hands is visible in most cameras.

OAKINK2-HO For hand-held object reconstruction, including
views of visible hands with a grasped object.

OAKINK2-O For object pose estimation, featuring views with at
least one visible object.

OAKINK2-Grasp Encompassing frames that depict a grasped object.
OAKINK2-Motion-Grab Collating frames that capture the approach and

grasp stages in a Primitive Task.
OAKINK2-Motion-Task Amassing frames that document the span from ob-

ject grasp to task completion.

Table 2. Definitions of the task-specific subsets.

lation targets, which instantiates to 150 Combined Tasks.
OAKINK2 contains in total 75 objects and 51 affordance at-
tributes. 51 affordance attributes map to 51 types of Prim-
itive Tasks. OAKINK2 contains 627 sequences of bimanual
dexterous hand-object interaction in total. 363 of these are
for Primitive Tasks and 264 are for Combined Tasks. In to-
tal, OAKINK2 contains 4.01M image frames.

We compare OAKINK2 to multiple existing hand-object
interaction datasets in Tab. 1. Compared with existing
human-centric video datasets [9, 15] which are larger in

scale and more diverse, OAKINK2 provides 3D grounding
information of embodied hand-object interaction for current
learning methods in the form of hand and object pose anno-
tations in 3D space. As for recent hand-object interaction
datasets like [11, 35], OAKINK2 has comparable scale and
contains more frames to cover long-horizon hand-object in-
teractions, and provides extra task decomposition informa-
tion for complex manipulation task completion. Compared
with its previous counterpart OakInk [57], OAKINK2 is
much larger in scale and covers affordance-based interac-
tions, extending the methodology to a further front.

4.3. Task-specified Subsets

Since OAKINK2 is intended to support a variety of tasks,
we have curated specialized subsets through diverse sample
selection specific to each task type. Segmentation masks
for bodies, hands, and objects are rendered per frame, indi-
vidually and in combination. An instance is deemed visible
in a frame if the ratio of the combined mask to any indi-
vidual mask surpasses a set threshold. Similarly, an object
is classified as grasped if it is maintained within a minimal



distance of ≤ 5mm to the hands and a height displacement
from its initial state of ≥ 5mm. The subsets are listed in
Tab. 2. Refer to the Sup. Mat for details on the features and
statistics of all available subsets.

5. Tasks and Benchmarks

We show in this section that OAKINK2 supports reconstruc-
tion tasks (Sec. 5.1) and motion generation tasks (Sec. 5.2).

5.1. Reconstruction

Motivation. Recovering 3D information from images re-
mains one of the core tasks of computer vision. Given that
OAKINK2 annotate 3D pose and shape information during
the completion of complex manipulation tasks, we evaluate
the performance of existing reconstruction methods on the
collected data. In numerous tasks of reconstructing 3D in-
formation from interaction scenes, we have selected the fol-
lowing two tasks to serve as benchmarks: (1) Single-view
Hand Mesh Recovery; (2) Multi-view Hand Mesh Recov-
ery. Evaluation on Single-view Hand Mesh Recovery mea-
sures the potential capabilities of existing methods in ex-
tracting 3D hand information in relative coordinate systems
from images or videos on an internet scale. Evaluation on
Multi-view Hand Mesh Recovery measures the potential ca-
pabilities of existing methods in recovering accurate hand
pose and shape in constrained capture scenarios containing
multiple pre-calibrated cameras.

Task Definition. In general, the Hand Mesh Recovery task
is to estimate the 3D hand poses Ph and shapes Vh during
the interaction process from the captured images I = {I}.
In single-view settings, the image input {Iv} will only con-
tain one view v from all views, egocentric or allocentric.
Then the task is to learn a parameterized model that pre-
dicts the distribution: PΦ(Ph,Vh|I = {Iv}).

In multi-view settings, the image input will contain mul-
tiple views I = {Iv1 , · · · , Ivn}, together with the camera
calibration parameters. Then the task is to learn a parame-
terized model that predicts: PΦ(Ph,Vh|{Iv1 , · · · , Ivn}).

Evaluation metrics and Baselines. We evaluate three cat-
egories of metrics: (1) mean per joint position error
(MPJPE); (2) mean per vertex position error (MPVPE);
and (3) percentages of correct keypoints under the curve
within range (AUC). These metrics are evaluated in dif-
ferent frame systems. In single-view settings, these met-
rics will be evaluated in wrist(root)-relative (RR) systems,
frame systems after procustes analysis (PA) and frame sys-
tems of the camera space. In multi-view settings, these
metrics will be additionally evaluated in frame systems of
the world space. For Single-view Hand Mesh Recovery,
we use METRO [33] and Residual Log-likelihood Estima-
tion (RLE) [30] on OAKINK2-H-SV subset as baselines.

For Multi-view Hand Mesh Recovery, we use POEM [58]
and its variants on OAKINK2-H-MV as baselines. Detailed
benchmark results are provided Sup. Mat.

5.2. Complex Task Completion

Motivation. OAKINK2 brings in a new aspect – decompos-
ing Complex Combined tasks into paths of Primitives. Each
primitive is associated with a diverse array of image-textual
descriptions, a feature that greatly facilitates the inverse pro-
cess of Complex Task Completion (CTC). CTC involves
generating complex manipulation sequences based on tex-
tual instruction. To effectively accomplish the CTC task,
OakInk2 supplies annotations for each phase, empowering
neural networks to adeptly interpret scenes, accurately lo-
calize objects, parse Complex Combined Tasks into Primi-
tives, and replicate human demonstrations corresponding to
each Primitive. CTC has immediate applications in AR and
human-robot interaction, offering novel capabilities such as
the automated scripting of digital human behaviors and pro-
viding adaptive assistance in household activities, enriching
user convenience.

Task Definition. The Complex Task Completion task is to
generate human motion trajectories based on a textual de-
scription of the scene ws and the complex manipulation
task objective wg , involved object models M and their
poses Tm in the initial scene, as well as text {wo} describ-
ing the state of each object in the initial scene. The goal
is to generate a human motion trajectory that can accom-
plish the task objective given the provided dependency con-
straints provided in OAKINK2.

End-to-end generation in this particular setup exerts
great challenges that surpass the capabilities of current
learning methods. The recent breakthroughs in foundation
models [7, 23, 27, 40] including Vision Language Models
(VLM) and open-vocabulary vision models allow us to uti-
lize them as oracles, indicating that certain parts in the gen-
eration process could be assumed to be solved by these ora-
cles. Here we assume the motion trajectory of objects from
their source locations to target locations for task comple-
tion can be derived from the oracles. Based on this assump-
tion, we adopt a multi-staged problem modeling approach.
Specifically, we follow these two stages:
(1) Utilize demonstration trajectories from the primitive

tasks provided by OAKINK2. For each primitive task,
we learn a trajectory generation model and formulate it
into a unified API format.

(2) Employ the retrieve and compose paradigm and lever-
age the task planning abilities of a pre-existing large
language model (LLM). This enables us to generate
query codes for object locations and attributes and exe-
cution codes of the pre-learned primitive tasks.

By combining these two stages as subtasks, we aim to find



a potential approach to address the complexities involved
in generating human motion trajectories for complex task
completion.

Motion Generation. This subtask is to learn a Primitive
Task-specific human motion generation model based on
demonstrations included in OAKINK2. Given a Primitive
Task wp, we assume that both the object m’s starting posi-
tion T (0) and trajectory

{
T (i)

}
during the interaction pro-

cess are known. Then our objective is to generate a se-
quence of human poses

{
P

(j)
h

}
in such a way that the hu-

man approaches and grabs the object at its starting position,
and proceeds to move the object along its trajectory to the
final position.

We further split the subtask into three substages. In
the first substage, a static grasp P

(jg)
h is generated based

on the object’s initial pose
{
T (0)

}
in its trajectory. Sub-

sequently in the second substage, a human motion tra-
jectory

{
P

(0)
h , · · · ,P (jg)

h

}
is generated to reach the ob-

ject in its initial location. In the final substage, we gen-
erate a human motion trajectory

{
P

(jg+1)
h , · · · ,P (jend)

h

}
sufficient to complete the Primitive Task in accordance
with the object’s movement trajectory. By merging the
trajectories from the second and third substages into{
P

(0)
h , · · · ,P (jg)

h , · · · ,P (jend)
h

}
, we consequently gener-

ate the desired human posture trajectory that has completed
the Primitive Task. We adopt the GNet and MNet in GOAL
[50] model for the first and second substage, and a modified
version in the final substage. We evaluate contact ratio (CR)
and solid intersection volume (SIV) on first substage results
and evaluate motion smoothness with Power Spectrum KL
divergence of joints (PSKL-J). For the network frameworks
and benchmark results, we refer to the Sup. Mat.

Primitive Planning. In this stage we leverage the task
planning ability of GPT-4 [43] to generate programs that
can be executed to generate multiple trajectories for under-
lying Primitive Tasks completion. We first embed the scene
description wg and each object’s description {wo} into the
prompt based on manually designed templates, as well as
the predefined function APIs including the oracles that de-
tect object positions and synthesis object trajectories and the
motion generators for Primitive Tasks. GPT-4 will respond
to the prompt, and then we use a symbolic checker built
upon the dependency information for Primitive Task com-
pletion in OAKINK2 to test whether the generated program
completes the task without violation of constraints. If a suc-
cessful program is acquired, it is executed to call in sequel
multiple Primitive Task motion generators. These trajecto-
ries are connected by essential interpolation to connect the
end states of the previous trajectory to the initial states of
the next trajectory. This process is illustrated in Fig. 8.
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def exec_task(self):
    knife = Object('knife', 
        geometry=self.query_geometry_info('knife'), 
        state=self.query_state_info('knife'), 
        affordance=self.query_affordance_info('knife'))

    pear = Object('pear',
        geometry=self.query_geometry_info('pear'),
        state=self.query_state_info('pear'),
        affordance=self.query_affordance_info('pear'))
    
    frying_pan = Object('frying_pan', 
        geometry=self.query_geometry_info('frying_pan'), 
        state=self.query_state_info('frying_pan'), 
        affordance=self.query_affordance_info('frying_pan'))

    bottle = Object('bottle',
        geometry=self.query_geometry_info('bottle'),
        state=self.query_state_info('bottle'),
        affordance=self.query_affordance_info('bottle'))

    # instantiate the primitive task
    cut_task = PrimitiveTask(
        knife.affordance.get_primitive_task_info('cut'))
    cut_task.execute(
        src_object=knife, 
        tgt_object=pear, 
        trajectory=oracle.generate(cut_task))

    # put pieces of pear to pan
    arrange_task = PrimitiveTask(
         pear.affordance.get_primitive_task_info('arrange'))
    arrange_task.execute(
         src_object=pear, 
         tgt_object=frying_pan, 
         trajectory=oracle.generate(arrange_task))

    # add some season from bottle
    pour_task = PrimitiveTask(
         bottle.affordance.get_primitive_task_info('pour'))
    pour_task.execute(
         src_object=bottle, 
         tgt_object=frying_pan, 
         trajectory=oracle.generate(pour_task))

    return True

���

Cut Something
Primitive Task:

Pour Something
Primitive Task:

Figure 8. The diagram of Complex Task Completion. An ini-
tial input populates a predefined template, generating a targeted
prompt. GPT-4 responds with code that delineates the program’s
execution path. Within this code, blue snippet indicate motion
generators for primitive tasks; the orange snippet marks the ora-
cle that predicts object trajectories. A symbolic checker validates
the code and generates human movements. These actions are inte-
grated to produce the end outcome.

6. Future Works
OAKINK2 is a dataset packing a variety of hand-object in-
teractions for human completion of intricate, long-horizon
complex manipulation tasks. OAKINK2 incorporates Prim-
itive Tasks demonstrations, characterized as minimal inter-
actions that satisfy object affordance attributes, and Com-
bined Tasks demonstrations, which also include their de-
composition into interdependent Primitive Tasks.

First, we expect OAKINK2 to support large-scale
language-manipulation pretraining [25, 59], improving the
performance of numerous oracles involved in Complex Task
Completion. In the longer term, we expect OAKINK2 can
potentially support learning frameworks capable of end-to-
end text-to-manipulation generation.

Second, OAKINK2 can empower various embodied ma-
nipulation tasks in the future by retargeting the collected
demonstrations for Primitive Tasks to heterogeneous hands
and platforms as [19, 46, 47, 54, 56] implied. The interac-
tion scenarios constructed in OAKINK2 can also be trans-
ferred and integrated into existing simulation environments
[37, 51] to support embodied learning of complex Com-
bined Tasks completion.
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